Для записи составного высказывания в виде логического выражения на формальном языке (языке алгебры логики) в составном высказывании нужно выделить простые высказывания и логические связи между ними.
Запишем в форме логического выражения составное высказывание «(2*2 = 5 или 2*2 = 4) и (2 * 2≠5 или 2*2≠4)». Проанализируем составное высказывание. Оно содержит два простых высказывания:
A = "2*2=5" - ложно (0),
B = "2*2=4" - истинно (1).
"(А или В) и (¬А или ¬В)"
Теперь необходимо записать высказывание в форме логического выражения с учетом последовательности выполнения логических операций. При выполнении логических операций определен следующий порядок их выполнения: инверсия, конъюнкция, дизъюнкция. Для изменения указанного порядка могут использоваться скобки:
F=(A ∨ В) ∧ (¬А ∨ ¬В)
Истинность или ложность составных высказываний можно определять чисто формально, руководствуясь законами алгебры высказываний, не обращаясь к смысловому содержанию высказываний.
Таблицы истинности
При построении таблиц истинности целесообразно руководствоваться определенной последовательностью действий.
Во-первых, необходимо определить количество строк в таблице истинности. Оно равно количеству возможных комбинаций значений логических переменных, входящих в логическое выражение. Если количество логических переменных равно n, то:
количество строк = 2n
В нашем случае логическая функция F=(A ∨ В) ∧ (¬А ∨ ¬В) имеет 2 переменные и, следовательно, количество строк в таблице истинности должно быть равно 4.
Во-вторых, необходимо определить количество столбцов в таблице истинности, которое равно количеству логических переменных плюс количество логических операций.
В нашем случае количество переменных равно двум, а количество логических операций — пяти, то есть количество столбцов таблицы истинности равно семи.
В-третьих, необходимо построить таблицу истинности с указанным количеством строк и столбцов, обозначить столбцы и внести в таблицу возможные наборы значений исходных логических переменных.
В-четвертых, необходимо заполнить таблицу истинности по столбцам, выполняя базовые логические операции в необходимой последовательности и в соответствии с их таблицами истинности. Теперь мы можем определить значение логической функции для любого набора значений логических переменных.
А |
В |
A ∨ В |
¬А |
¬В |
¬А ∨ ¬В |
(A ∨ В) ∧ (¬А ∨ ¬В) |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
Предыдущий урок Следующий урок